Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 50
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
FEMS Microbes ; 5: xtad024, 2024.
Article de Anglais | MEDLINE | ID: mdl-38213393

RÉSUMÉ

Biofilm-forming cyanobacteria are abundant in mangrove ecosystems, colonizing various niches including sediment surface and periphyton where they can cover large areas, yet have received limited attention. Several filamentous isolates were recently isolated from Guadeloupe, illustrating the diversity and novelty present in these biofilms. In this study, nine strains belonging to three novel lineages found abundantly in Guadeloupe biofilms are characterized by genome sequencing, morphological and ultrastructural examination, metabolome fingerprinting and searched for secondary metabolites biosynthesis pathways. Assignation of two lineages to known genera is confirmed, namely Scytonema and Jaaginema. The third lineage corresponds to a new Coleofasciculales genus herein described as Karukerafilum gen. nov. The four strains belonging to this genus group into two subclades, one of which displays genes necessary for nitrogen fixation as well as the complete pathway for geosmin production. This study gives new insights into the diversity of mangrove biofilm-forming cyanobacteria, including genome-based description of a new genus and the first genome sequence available for the genus Jaaginema.

2.
Genome Biol Evol ; 15(9)2023 09 04.
Article de Anglais | MEDLINE | ID: mdl-37708391

RÉSUMÉ

Bacteria and Archaea are traditionally regarded as organisms with a simple morphology constrained to a size of 2-3 µm. Nevertheless, the history of microbial research is rich in the description of giant bacteria exceeding tens and even hundreds of micrometers in length or diameter already from its early days, for example, Beggiatoa spp., to the present, for example, Candidatus Thiomargarita magnifica. While some of these giants are still being studied, some were lost to science, with merely drawings and photomicrographs as evidence for their existence. The physiology and biogeochemical role of giant bacteria have been studied, with a large focus on those involved in the sulfur cycle. With the onset of the genomic era, no special emphasis has been given to this group, in an attempt to gain a novel, evolutionary, and molecular understanding of the phenomenon of bacterial gigantism. The few existing genomic studies reveal a mysterious world of hyperpolyploid bacteria with hundreds to hundreds of thousands of chromosomes that are, in some cases, identical and in others, extremely different. These studies on giant bacteria reveal novel organelles, cellular compartmentalization, and novel mechanisms to combat the accumulation of deleterious mutations in polyploid bacteria. In this perspective paper, we provide a brief overview of what is known about the genomics of giant bacteria and build on that to highlight a few burning questions that await to be addressed.


Sujet(s)
Génomique , Tétranitrate de pentaérithrityle , Bactéries/génétique , Archéobactéries/génétique , Évolution biologique
3.
Sci Total Environ ; 900: 165816, 2023 Nov 20.
Article de Anglais | MEDLINE | ID: mdl-37506913

RÉSUMÉ

Free-living amoebae (FLA) are ubiquitous protozoa mainly found in aquatic environments. They are well-known reservoirs and vectors for the transmission of amoeba-resistant bacteria (ARB), most of which are pathogenic to humans. Yet, the natural bacterial microbiota associated with FLA remains largely unknown. Herein, we characterized the natural bacterial microbiota of different FLA species isolated from recreational waters in Guadeloupe. Monoxenic cultures of Naegleria australiensis, Naegleria sp. WTP3, Paravahlkampfia ustiana and Vahlkampfia sp. AK-2007 (Heterolobosea lineage) were cultivated under different grazing conditions, during successive passages. The whole bacterial microbiota of the waters and the amoebal cysts was characterized using 16S rRNA gene metabarcoding. The culturable subset of ARB was analyzed by mass spectrometry (MALDI-TOF MS), conventional 16S PCR, and disk diffusion method (to assess bacterial antibiotic resistance). Transmission electron microscopy was used to locate the ARB inside the amoebae. According to alpha and beta-diversity analyses, FLA bacterial microbiota were significantly different from the ones of their habitat. While Vogesella and Aquabacterium genera were detected in water, the most common ARB belonged to Pseudomonas, Bosea, and Escherichia/Shigella genera. The different FLA species showed both temporary and permanent associations with differentially bacterial taxa, suggesting host specificity. These associations depend on the number of passages and grazing conditions. Additionally, Naegleria, Vahlkampfia and Paravahlkampfia cysts were shown to naturally harbor viable bacteria of the Acinetobacter, Escherichia, Enterobacter, Pseudomonas and Microbacterium genera, all being pathogenic to humans. To our knowledge, this is the first time Paravahlkampfia and Vahlkampfia have been demonstrated as hosts of pathogenic ARB in water. Globally, the persistence of these ARB inside resistant cysts represents a potential health risk. To ensure the continued safety of recreational waters, it is crucial to (i) regularly control both the amoebae and their ARB and (ii) improve knowledge on amoebae-bacteria interactions to establish better water management protocols.


Sujet(s)
Amoeba , Microbiote , Humains , Eau , ARN ribosomique 16S/génétique , Antagonistes des récepteurs aux angiotensines , Inhibiteurs de l'enzyme de conversion de l'angiotensine , Bactéries/génétique
4.
J Environ Qual ; 52(4): 886-896, 2023.
Article de Anglais | MEDLINE | ID: mdl-36758236

RÉSUMÉ

Mangrove sediments are known to be potentially active reducing zones for nitrogen removal. The goal of this work was to investigate the potential for nitrate reduction in marine mangrove sediments along a canal impacted by anthropogenic activity (Guadeloupe, Lesser Antilles). To this end, the effect of nitrate concentration, organic carbon load, and hydraulic retention time was assessed as factors affecting these nitrate reduction rates. Nitrate reduction potential was determined using flow-through reactors in marine mangrove sediments collected along "The Canal des Rotours" in Guadeloupe. Potential nitrate reduction rates, in the presence of indigenous organic carbon, generally increased upon increasing nitrate supply from around 120 nmol cm-3 h-1 (low nitrate) up to 378 nmol cm-3 h-1 (high nitrate). The potential for nitrate reduction increased significantly with the addition of mangrove leaves, whereas the addition of simple, easily degradable carbon (acetate) resulted in an almost fivefold increase in nitrate reduction rates (up to 748 nmol cm-3  h-1 ). The hydraulic retention time also had an impact on the nitrate reducing capacity due to an increased contact time between nitrate and the benthic microbial community. Marine mangrove sediments have a high potential to mitigate nitrogen pollution, mainly governed by the presence of large amounts of degradable carbon in the form of litter. The mangrove sediments from this Caribbean island, currently exposed to a small tidal effect, could increase their nitrate elimination capacities due to prolonged water retention via engineering.


Sujet(s)
Sédiments géologiques , Nitrates , Guadeloupe , Composés chimiques organiques , Carbone/analyse
5.
ISME J ; 17(3): 340-353, 2023 03.
Article de Anglais | MEDLINE | ID: mdl-36528730

RÉSUMÉ

Thiovulum spp. (Campylobacterota) are large sulfur bacteria that form veil-like structures in aquatic environments. The sulfidic Movile Cave (Romania), sealed from the atmosphere for ~5 million years, has several aqueous chambers, some with low atmospheric O2 (~7%). The cave's surface-water microbial community is dominated by bacteria we identified as Thiovulum. We show that this strain, and others from subsurface environments, are phylogenetically distinct from marine Thiovulum. We assembled a closed genome of the Movile strain and confirmed its metabolism using RNAseq. We compared the genome of this strain and one we assembled from public data from the sulfidic Frasassi caves to four marine genomes, including Candidatus Thiovulum karukerense and Ca. T. imperiosus, whose genomes we sequenced. Despite great spatial and temporal separation, the genomes of the Movile and Frasassi Thiovulum were highly similar, differing greatly from the very diverse marine strains. We concluded that cave Thiovulum represent a new species, named here Candidatus Thiovulum stygium. Based on their genomes, cave Thiovulum can switch between aerobic and anaerobic sulfide oxidation using O2 and NO3- as electron acceptors, the latter likely via dissimilatory nitrate reduction to ammonia. Thus, Thiovulum is likely important to both S and N cycles in sulfidic caves. Electron microscopy analysis suggests that at least some of the short peritrichous structures typical of Thiovulum are type IV pili, for which genes were found in all strains. These pili may play a role in veil formation, by connecting adjacent cells, and in the motility of these exceptionally fast swimmers.


Sujet(s)
Grottes , Epsilonproteobacteria , Grottes/composition chimique , Soufre/métabolisme , Epsilonproteobacteria/métabolisme , Roumanie , Phylogenèse
6.
Front Plant Sci ; 13: 1030862, 2022.
Article de Anglais | MEDLINE | ID: mdl-36407590

RÉSUMÉ

Huanglongbing (HLB) is a disease that is responsible for the death of millions of trees worldwide. The bacterial causal agent belongs to Candidatus Liberibacter spp., which is transmitted by psyllids. The bacterium lead most of the time to a reaction of the tree associated with callose synthesis at the phloem sieve plate. Thus, the obstruction of pores providing connections between adjacent sieve elements will limit the symplastic transport of the sugars and starches synthesized through photosynthesis. In the present article, we investigated the impact of the use of tetraploid Swingle citrumelo (Citrus paradisi Macfrad × Poncirus trifoliata [L.] Raf) rootstock on HLB tolerance, compared to its respective diploid. HLB-infected diploid and tetraploid rootstocks were investigated when grafted with Mexican and Persian limes. Secondary roots were anatomically studied using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) to observe callose deposition at the phloem sieve plate and to evaluate the impact of the bacterium's presence at the cellular level. Voltammetry of immobilized microparticles (VIMP) in roots was applied to determine the oxidative stress status of root samples. In the field, Mexican and Persian lime leaves of trees grafted onto tetraploid rootstock presented less symptoms of HLB. Anatomical analysis showed much stronger secondary root degradation in diploid rootstock, compared to tetraploid rootstock. Analysis of the root sieve plate in control root samples showed that pores were approximately 1.8-fold larger in tetraploid Swingle citrumelo than in its respective diploid. SEM analyses of root samples did not reveal any callose deposition into pores of diploid and tetraploid genotypes. VIMP showed limited oxidative stress in tetraploid samples, compared to diploid ones. These results were even strongly enhanced when rootstocks were grafted with Persian limes, compared to Mexican limes, which was corroborated by stronger polyphenol contents. TEM analysis showed that the bacteria was present in both ploidy root samples with no major impacts detected on cell walls or cell structures. These results reveal that tetraploid Swingle citrumelo rootstock confers better tolerance to HLB than diploid. Additionally, an even stronger tolerance is achieved when the triploid Persian lime scion is associated.

7.
PLoS One ; 17(8): e0273668, 2022.
Article de Anglais | MEDLINE | ID: mdl-36040904

RÉSUMÉ

Wolbachia Hertig, 1936 is an intracellular bacterial symbiont colonizing many arthropods. Of the studies done on the bacteria present in the superfamily Gerroidea Leach, 1815, no report of Wolbachia infection had yet been made. Thus, we checked the presence of Wolbachia in six Gerroidea species which colonize tropical aquatic environments by PCR using wsp primer set before sequencing and phylogenetic analyses. Insects were collected in the marine fringe of mangroves, in river estuaries, in swampy mangroves, and in ponds from Guadeloupe islands (Caribbean). Two new strains of Wolbachia were detected in these Gerroidea. They were named wLfran and wRmang. The wsp sequences suggest that the strains belong to the already described E supergroup or similar. wLfran is present in Limnogonus franciscanus Stål, 1859 and Rheumatobates trinitatis (China, 1943) while wRmang appears to be present exclusively in R. mangrovensis (China, 1943). Three other species were analysed, but did not appear to be infected: Brachymetra albinerva (Amyot & Serville, 1843), Halobates micans Eschscheltz, 1822, and Microvelia pulchella Westwood, 1834. The results presented here highlight for the first time the presence of new intracellular Wolbachia strains in Gerroidea colonising tropical aquatic environments like mangrove habitats from inlands to sea shore.


Sujet(s)
Arthropodes , Heteroptera , Wolbachia , Animaux , Arthropodes/microbiologie , ADN bactérien , Phylogenèse , Wolbachia/génétique
8.
Science ; 376(6600): 1453-1458, 2022 06 24.
Article de Anglais | MEDLINE | ID: mdl-35737788

RÉSUMÉ

Cells of most bacterial species are around 2 micrometers in length, with some of the largest specimens reaching 750 micrometers. Using fluorescence, x-ray, and electron microscopy in conjunction with genome sequencing, we characterized Candidatus (Ca.) Thiomargarita magnifica, a bacterium that has an average cell length greater than 9000 micrometers and is visible to the naked eye. These cells grow orders of magnitude over theoretical limits for bacterial cell size, display unprecedented polyploidy of more than half a million copies of a very large genome, and undergo a dimorphic life cycle with asymmetric segregation of chromosomes into daughter cells. These features, along with compartmentalization of genomic material and ribosomes in translationally active organelles bound by bioenergetic membranes, indicate gain of complexity in the Thiomargarita lineage and challenge traditional concepts of bacterial cells.


Sujet(s)
ADN bactérien , Organites , Thiotrichaceae , Variations de nombre de copies de segment d'ADN , ADN bactérien/analyse , ADN bactérien/métabolisme , Étapes du cycle de vie , Organites/composition chimique , Organites/métabolisme , Polyploïdie , Thiotrichaceae/génétique , Thiotrichaceae/croissance et développement , Thiotrichaceae/ultrastructure
9.
iScience ; 25(1): 103552, 2022 Jan 21.
Article de Anglais | MEDLINE | ID: mdl-35059602

RÉSUMÉ

Less than a handful of cuboid and squared cells have been described in nature, which makes them a rarity. Here, we show how Candidatus Thiosymbion cuboideus, a cube-like gammaproteobacterium, reproduces on the surface of marine free-living nematodes. Immunostaining of symbiont cells with an anti-fimbriae antibody revealed that they are host-polarized, as these appendages exclusively localized at the host-proximal (animal-attached) pole. Moreover, by applying a fluorescently labeled metabolic probe to track new cell wall insertion in vivo, we observed that the host-attached pole started septation before the distal one. Similarly, Ca. T. cuboideus cells immunostained with an anti-FtsZ antibody revealed a proximal-to-distal localization pattern of this tubulin homolog. Although FtsZ has been shown to arrange into squares in synthetically remodeled cuboid cells, here we show that FtsZ may also mediate the division of naturally occurring ones. This implies that, even in natural settings, membrane roundness is not required for FtsZ function.

10.
Front Plant Sci ; 12: 685679, 2021.
Article de Anglais | MEDLINE | ID: mdl-34512684

RÉSUMÉ

Huanglongbing (HLB) is presently a major threat to the citrus industry. Because of this disease, millions of trees are currently dying worldwide. The putative causal agent is a motile bacteria belonging to Candidatus Liberibacter spp., which is transmitted by psyllids. The bacteria is responsible for the synthesis of callose at the phloem sieve plate, leading to the obstruction of the pores that provide connections between adjacent sieve elements, thus limiting the symplastic transport of the sugars and starches synthesized in leaves to the other plant organs. The Persian triploid lime (Citrus latifolia) is one of the most HLB-tolerant citrus varieties, but the determinants associated with the tolerance are still unknown. HLB-infected diploid Mexican lime (Citrus aurantiifolia) and Persian lime were investigated. The leaf petiole was analyzed using scanning electron microscopy (SEM) to observe callose deposition at the phloem sieve plate. Leaf starch contents and detoxification enzyme activities were investigated. In the field, Persian lime leaves present more limited symptoms due to HLB than the Mexican lime leaves do. Photosynthesis, stomatal conductance, and transpiration decreased compared with control plants, but values remained greater in the Persian than in the Mexican lime. Analysis of the petiole sieve plate in control petiole samples showed that pores were approximately 1.8-fold larger in the Persian than in the Mexican lime. SEM analyses of petiole samples of symptomatic leaves showed the important deposition of callose into pores of Mexican and Persian limes, whereas biochemical analyses revealed better detoxification in Persian limes than in Mexican limes. Moreover, SEM analyses of infected petiole samples of asymptomatic leaves showed much larger callose depositions into the Mexican lime pores than in the Persian lime pores, whereas biochemical traits revealed much better behavior in Persian limes than in Mexican limes. Our results reveal that polyploids present specific behaviors associated with important physiological and biochemical determinants that may explain the better tolerance of the Persian lime against HLB compared with the Mexican lime.

11.
Can J Microbiol ; : 1-14, 2021 Aug 30.
Article de Anglais | MEDLINE | ID: mdl-34461021

RÉSUMÉ

A large (47.75 ± 3.56 µm in diameter) Thiovulum bacterial strain forming white veils is described from a marine mangrove ecosystem. High sulfide concentrations (up to 8 mM of H2S) were measured on sunken organic matter (wood/bone debris) under laboratory conditions. This sulfur-oxidizing bacterium colonized the organic matter, forming a white veil. According to conventional scanning electron microscope (SEM) observations, bacterial cells are ovoid and slightly motile by numerous small flagella present on the cell surface. Large intracytoplasmic internal sulfur granules were observed, suggesting a sulfidic-based metabolism. Observations were confirmed by elemental sulfur distribution detected by energy-dispersive X-ray spectroscopy (EDXS) analysis using an environmental scanning electron microscope (ESEM) on non-dehydrated samples. Phylogenetic analysis of the partial sequence of 16S rDNA obtained from purified fractions of this Epsilonproteobacteraeota strain indicates that this bacterium belongs to the Thiovulaceae cluster and could be one of the largest Thiovulum ever described. We propose to name this species Candidatus Thiovulum sp. strain imperiosus.

12.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Article de Anglais | MEDLINE | ID: mdl-34272286

RÉSUMÉ

In the ocean, most hosts acquire their symbionts from the environment. Due to the immense spatial scales involved, our understanding of the biogeography of hosts and symbionts in marine systems is patchy, although this knowledge is essential for understanding fundamental aspects of symbiosis such as host-symbiont specificity and evolution. Lucinidae is the most species-rich and widely distributed family of marine bivalves hosting autotrophic bacterial endosymbionts. Previous molecular surveys identified location-specific symbiont types that "promiscuously" form associations with multiple divergent cooccurring host species. This flexibility of host-microbe pairings is thought to underpin their global success, as it allows hosts to form associations with locally adapted symbionts. We used metagenomics to investigate the biodiversity, functional variability, and genetic exchange among the endosymbionts of 12 lucinid host species from across the globe. We report a cosmopolitan symbiont species, Candidatus Thiodiazotropha taylori, associated with multiple lucinid host species. Ca. T. taylori has achieved more success at dispersal and establishing symbioses with lucinids than any other symbiont described thus far. This discovery challenges our understanding of symbiont dispersal and location-specific colonization and suggests both symbiont and host flexibility underpin the ecological and evolutionary success of the lucinid symbiosis.


Sujet(s)
Bivalvia/microbiologie , Gammaproteobacteria/classification , Gammaproteobacteria/physiologie , Symbiose , Animaux , Processus autotrophes , Biodiversité , Évolution biologique , Bivalvia/classification , Bivalvia/physiologie , Gammaproteobacteria/génétique , Gammaproteobacteria/isolement et purification , Spécificité d'hôte , Phylogenèse , Phylogéographie
13.
Sci Rep ; 10(1): 17309, 2020 10 14.
Article de Anglais | MEDLINE | ID: mdl-33057038

RÉSUMÉ

Chlordecone (CLD) levels measured in the rivers of the French West Indies were among the highest values detected worldwide in freshwater ecosystems, and its contamination is recognised as a severe health, environmental, agricultural, economic, and social issue. In these tropical volcanic islands, rivers show strong originalities as simplified food webs, or numerous amphidromous migrating species, making the bioindication of contaminations a difficult issue. The objective of this study was to search for biological responses to CLD pollution in a spatially fixed and long-lasting component of the rivers in the West Indies: the epilithic biofilm. Physical properties were investigated through complementary analyses: friction, viscosity as well as surface adhesion were analyzed and coupled with measures of biofilm carbon content and exopolymeric substance (EPS) production. Our results have pointed out a mesoscale chemical and physical reactivity of the biofilm that can be correlated with CLD contamination. We were able to demonstrate that epilithic biofilm physical properties can effectively be used to infer freshwater environmental quality of French Antilles rivers. The friction coefficient is reactive to contamination and well correlated to carbon content and EPS production. Monitoring biofilm physical properties could offer many advantages to potential users in terms of effectiveness and ease of use, rather than more complex or time-consuming analyses.

14.
Mar Drugs ; 18(1)2019 Dec 23.
Article de Anglais | MEDLINE | ID: mdl-31878034

RÉSUMÉ

Benthic cyanobacteria strains from Guadeloupe have been investigated for the first time by combining phylogenetic, chemical and biological studies in order to better understand the taxonomic and chemical diversity as well as the biological activities of these cyanobacteria through the effect of their specialized metabolites. Therefore, in addition to the construction of the phylogenetic tree, indicating the presence of 12 potentially new species, an LC-MS/MS data analysis workflow was applied to provide an overview on chemical diversity of 20 cyanobacterial extracts, which was linked to antimicrobial activities evaluation against human pathogenic and ichtyopathogenic environmental strains.


Sujet(s)
Produits biologiques/pharmacologie , Cyanobactéries/composition chimique , Cyanobactéries/génétique , Bactéries à Gram négatif/effets des médicaments et des substances chimiques , Phylogenèse , Antibactériens , Anti-infectieux , Guadeloupe , Zones humides
15.
C R Biol ; 341(7-8): 387-397, 2018.
Article de Anglais | MEDLINE | ID: mdl-30097382

RÉSUMÉ

Here, we report the first description of a marine purple sulfur bacterium (PSB) from sulfide-rich sediments of a marine mangrove in the Caribbean. TEM shows that this new isolate contains intracytoplasmic vesicular membrane systems (containing bacteriochlorophyll a) and larger internal sulfur granules, confirmed by EDXS analyses performed using ESEM. The sulfur distribution and mapping obtained for this PSB strain has allowed us to conclude that elemental sulfur is formed as an intermediate oxidation product and stored intracellularly. SEM shows that the bacterial cells are ovoid and extremely motile via lophotrichous flagella. Phylogenetic characterization, based on the analysis of 16S rDNA and functional gene pufM sequences, demonstrate that this strain belongs to the Chromatiaceae and may be a representative of a new species of the genus Halochromatium. Thus, reduced sediments of marine mangrove represent a sulfide-rich environment that sustains the development of Chromatiaceae, in addition to sulfur-oxidizing bacteria and cyanobacteria, as previously reported.


Sujet(s)
Bactériochlorophylle A/analyse , Chromatiaceae/isolement et purification , Sédiments géologiques/microbiologie , Caraïbe , ADN bactérien/génétique , ADN ribosomique/génétique , Guadeloupe , Phylogenèse , ARN ribosomique 16S/génétique , Analyse de séquence d'ADN
16.
Biometals ; 31(4): 627-637, 2018 08.
Article de Anglais | MEDLINE | ID: mdl-29767397

RÉSUMÉ

Crypt cells-one of the three cell types composing Strombidae digestive tubules-are characterized by the presence of numerous metal-containing phosphate granules termed spherocrystals. We explored the bioaccumulation and detoxification of metals in Strombidae by exposing wild fighting conch Strombus pugilis for 9 days to waterborne CuSO4 and ZnSO4. The total amount of Cu and Zn was determined in the digestive gland and in the rest of the body by Inductively Coupled Plasma (ICP) analyses. The digestive gland spherocrystal metal content was investigated based on the semi-quantitative energy dispersive X-ray (EDX) elemental analysis. ICP analyses of unexposed individuals revealed that 87.0 ± 5.9% of the Zn is contained in the digestive gland, where its concentration is 36 times higher than in the rest of the body. Regarding Cu, 25.8 ± 16.4% of the metal was located in the digestive gland of the control individuals, increasing to 61.5 ± 16.4% in exposed individuals. Both Cu and Zn concentrations in the digestive gland increased after exposures, pointing to a potential role of this organ in the detoxification of these metals. EDX analysis of spherocrystals revealed the presence of Ca, Cl, Fe, K, Mg, P, and Zn in unexposed individuals. No difference was found in the relative proportion of Zn in spherocrystals of exposed versus control individuals. Contrastingly, copper was never detected in the spherocrystals from controls and Zn-exposed individuals, but the relative proportion of Cu in spherocrystals of Cu-exposed individuals varied from 0.3 to 5.7%. Our results show the direct role of spherocrystals in Cu detoxification.


Sujet(s)
Cuivre/métabolisme , Cuivre/toxicité , Gastropoda/effets des médicaments et des substances chimiques , Zinc/métabolisme , Zinc/toxicité , Animaux , Gastropoda/métabolisme , Inactivation métabolique
17.
Eur J Protistol ; 62: 43-55, 2018 Feb.
Article de Anglais | MEDLINE | ID: mdl-29202309

RÉSUMÉ

Ciliates represent a diversified group of protists known to establish symbioses with prokaryotic micro-organisms. They are mainly phagotrophs and symbiotic relationships with bacteria can give them an important advantage in chemosynthetic environments. The aim of this study is to describe the thiotrophic association that occurs between the peritrich ciliate Pseudovorticella sp. and potential sulfur-oxidizing bacteria. Investigations at microscopic scale (LM, SEM, TEM) showed ectosymbiotic bacteria covering the surface of the body of Pseudovorticella sp. According to 16S rDNA phylogenetic analysis, these ectosymbiotic bacteria belong to γ-proteobacteria and are phylogenetically close to the symbiont of the recently described Zoothamnium ignavum, which inhabits shallow-water wood falls. FISH experiments, using symbiont specific probes, clearly indicate that these ectosymbiotic bacteria are also ingested into food vacuoles. Electron lucent granules observed in TEM in the cytoplasm of the ectosymbiotic bacteria have been identified as sulfur granules by Raman microspectrometry analyses. Raman microspectrometry analyses confirmed the thiotrophic nature of this relationship already suggested by the results obtained by TEM and phylogeny. A complete sulfur map was then performed to investigate the sulfur distribution in the zooid. Results show that the relationship between this protist and its bacterial partner is a thiotrophic ectosymbiosis.


Sujet(s)
Organismes aquatiques/physiologie , Phénomènes physiologiques bactériens , Oligohymenophorea/microbiologie , Symbiose , Organismes aquatiques/génétique , Bactéries/génétique , Bactéries/ultrastructure , ADN ribosomique/génétique , Oligohymenophorea/génétique , Oligohymenophorea/physiologie , Oligohymenophorea/ultrastructure , Phylogenèse , ARN ribosomique 16S/génétique , Bois/microbiologie , Bois/parasitologie
18.
FEMS Microbiol Lett ; 364(18)2017 Oct 02.
Article de Anglais | MEDLINE | ID: mdl-28922839

RÉSUMÉ

Here, the first description is reported of an epsilon sulfur-oxidizing bacterium from sulfide-rich sediments of marine mangrove in the Caribbean. By transition electron microscopy it was shown that this new strain contains intracytoplasmic large internal sulfur granules, which was confirmed by energy-dispersive X-ray spectroscopy analyses performed using an environmental scanning electron microscope. The sulfur distribution obtained for this sulfur-oxidizing bacterial strain allowed us to conclude that elemental sulfur is formed as an intermediate oxidation product and stored intracellularly. By conventional scanning electron microscopy it was shown that the bacterial cells are ovoid and extremely motile by lophotrichous flagella. Phylogenetic analyses based on partial sequence of the 16S rRNA gene confirmed that the bacterial strain belongs to the Thiovulum cluster and could be a representative of a new species in this poorly studied genus of sulfur-oxidizing free-living bacteria. Thus, reduced sediment of marine mangrove represents a sulfide-rich environment sustaining development of both gamma and epsilon sulfur-oxidizing Proteobacteria.


Sujet(s)
Epsilonproteobacteria/classification , Sédiments géologiques/microbiologie , Bactéries sulfato-réductrices/classification , Soufre/métabolisme , Zones humides , Caraïbe , ADN bactérien/génétique , Epsilonproteobacteria/génétique , Epsilonproteobacteria/isolement et purification , Epsilonproteobacteria/ultrastructure , Flagelles , Phylogenèse , ARN ribosomique 16S/génétique , Analyse de séquence d'ADN , Soufre/composition chimique , Bactéries sulfato-réductrices/génétique , Bactéries sulfato-réductrices/isolement et purification
19.
J Nat Prod ; 80(5): 1693-1696, 2017 05 26.
Article de Anglais | MEDLINE | ID: mdl-28421754

RÉSUMÉ

A novel spiro-indolofuranone fused to a thiazine skeleton, orbicularisine (1), was isolated from gills of the mollusk Codakia orbicularis. The isolation and structure elucidation using spectroscopic evidence including mass and NMR spectroscopy are described. The final structure of 1 was supported by key HMBC correlation.


Sujet(s)
Bivalvia/composition chimique , Branchies/composition chimique , Indolizine/isolement et purification , Spiranes/isolement et purification , Animaux , Indolizine/composition chimique , Indolizine/métabolisme , Spectroscopie par résonance magnétique , Structure moléculaire , Spiranes/composition chimique , Spiranes/métabolisme
20.
PLoS One ; 12(3): e0173155, 2017.
Article de Anglais | MEDLINE | ID: mdl-28253356

RÉSUMÉ

OBJECTIVE: The first aim of this study was to evaluate the antimicrobial resistance of Enterobacteriaceae in different water environments of Guadeloupe and especially those impacted by waste water treatment plants (WWTP) effluents. The second objective was to characterize the genetic basis for antibiotic resistance of extended-spectrum beta-lactamase (ESBL) and AmpC beta-lactamase producing Enterobacteriaceae isolates (ESBLE and AmpCE). METHODS: We have collected 70 surface waters (river and sea samples) impacted or not by WWTP and 18 waste waters from 2 WWTPs in 2012 and 2013. We i) determined the total and resistant bacterial counts and ii) tested isolated Enterobacteriaceae for their antimicrobial susceptibility. We also studied the genetic basis for antibiotic resistance of ESBLE and AmpCE, and the genetic background of Escherichia coli. RESULTS: In rivers, contamination with Escherichia coli and antibiotic resistant coliforms (ARC) increased from the source to the mouth. Highest levels of river contamination with E. coli (9.26 x 105 MPN/100mL) and ARC (2.26 x 108 CFU/mL) were observed in surface water sampled near the discharge. A total of 246 Enterobacteriaceae strains resistant to antibiotics were isolated, mostly from waste waters and from river water collected near the discharge. Among these strains, 33 were Extended Spectrum Beta Lactamase (ESBLE) and 8 E. coli were AmpC beta-lactamase producers. All the ESBLE were isolated from waste waters or from river water collected near the discharge. The blaCTX-M gene was present in 29 of the 33 ESBLE strains, with 24 belonging to group 1. Numerous strains (68.7%) showed more than one acquired antibiotic resistance mechanism. E. coli strains belonged to different phylogenetic groups; among the B2 group, most strains belonged to the ST131 clone. CONCLUSION: Our results demonstrated that many human activities can supply antibiotic-resistant bacteria in surface water. Nevertheless, WWTPs were the most important supplier of ESBLE in water environment of Guadeloupe.


Sujet(s)
Antibactériens/pharmacologie , Enterobacteriaceae/effets des médicaments et des substances chimiques , Microbiologie de l'eau , Polluants chimiques de l'eau/pharmacologie , Numération de colonies microbiennes , Résistance bactérienne aux médicaments , Enterobacteriaceae/classification , Enterobacteriaceae/enzymologie , Guadeloupe , Tests de sensibilité microbienne , Phylogenèse
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...